skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hebert-Johnson, Ursula"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As algorithms increasingly inform and influence decisions made about individuals, it becomes increasingly important to address concerns that these algorithms might be discriminatory. The output of an algorithm can be discriminatory for many reasons, most notably: (1) the data used to train the algorithm might be biased (in various ways) to favor certain populations over others; (2) the analysis of this training data might inadvertently or maliciously introduce biases that are not borne out in the data. This work focuses on the latter concern. We develop and study multicalbration -- a new measure of algorithmic fairness that aims to mitigate concerns about discrimination that is introduced in the process of learning a predictor from data. Multicalibration guarantees accurate (calibrated) predictions for every subpopulation that can be identified within a specified class of computations. We think of the class as being quite rich; in particular, it can contain many overlapping subgroups of a protected group. We show that in many settings this strong notion of protection from discrimination is both attainable and aligned with the goal of obtaining accurate predictions. Along the way, we present new algorithms for learning a multicalibrated predictor, study the computational complexity of this task, and draw new connections to computational learning models such as agnostic learning. 
    more » « less